If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+20x+76=0
a = 1; b = 20; c = +76;
Δ = b2-4ac
Δ = 202-4·1·76
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{6}}{2*1}=\frac{-20-4\sqrt{6}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{6}}{2*1}=\frac{-20+4\sqrt{6}}{2} $
| -68=4(3+5b) | | 3r−6=9 | | 10.4=2z | | -99=m-99 | | 81=9(z+1) | | -5p+12+7p=8 | | 8=3x=20 | | 6-3(x-4)=24 | | –4d+10=–6d | | 14+h÷5=2 | | 8x+1x+270=540 | | 4x^{2}=x^{4} | | -37=x-4 | | -x+23-x=35 | | -20=-4+-8|3y-1| | | 5=x+5/4 | | 5x-12=3x-16 | | 5(x+1)-2x=26 | | -4x+8=8(1-5x) | | 12x-7=19x-35 | | 5/6(t+6)=15 | | 6(t-78)=72 | | (-1+5a)=-70 | | -4(2x-8)-8x=0 | | 9−2x= | | -1.125x+3=6.375 | | 2x-3+3x+5=17 | | 5x+1+4x-10=4x-4 | | F=9/528c+32 | | -1.125x+3=6 | | 1/8y-6=-11 | | 5x+11=-4x+2(x+2) |